

Time Series Forecasting

project by:

LINDSAY MCFARLANE

www.lindsaymsba.com

831.601.7684 | lindsay.alexandra14@gmail.com | [linkedin: lindsay-mcfarlane](#)

1

Summary

2

Full Deck

Summary

Goal

*Forecast the next quarter of
US Cocoa Bean Imports*

Models

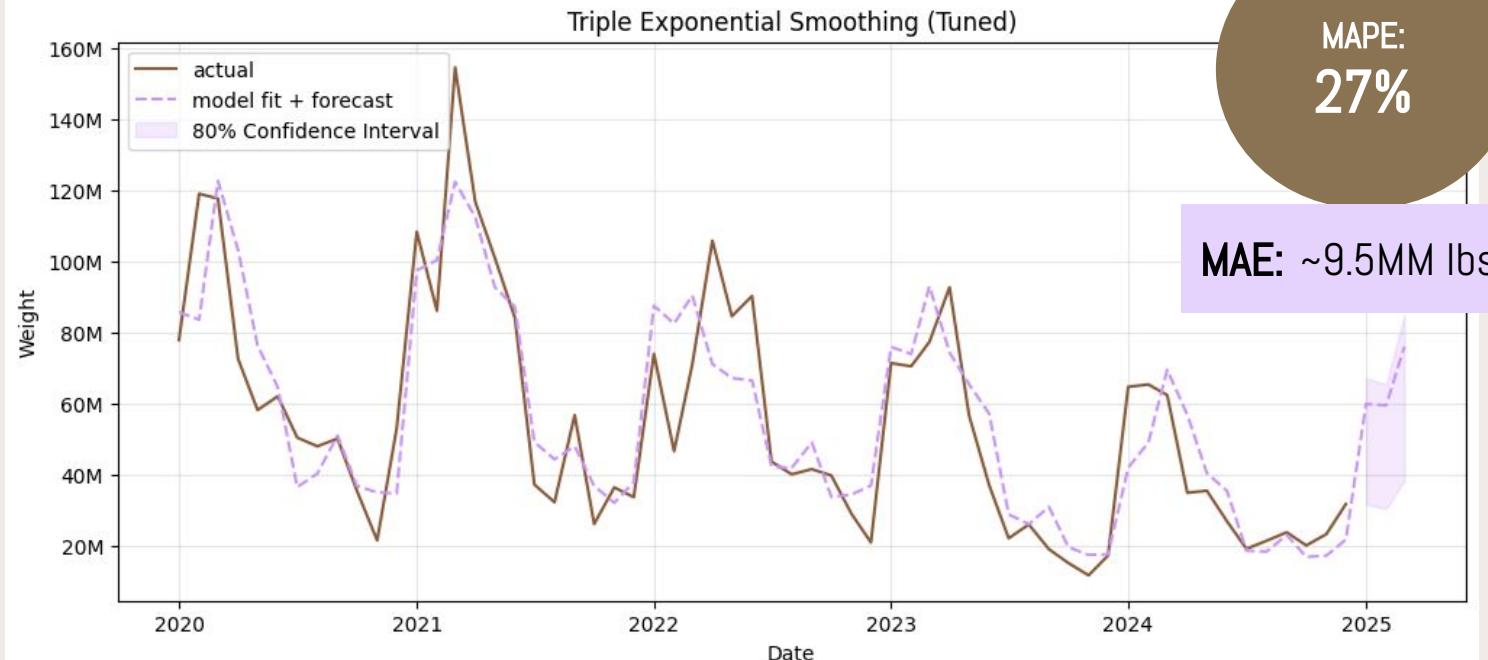
	Versions:	Tuned Models:
Triple Exponential Smoothing	Raw Data vs. Log Transformed	Multiplicative* = 2
SARIMA	Raw Data vs. Log Transformed	Manual, Short vs. Full Grid Search = 6
Prophet	Raw Data vs. Log Transformed	Grid Search* = 2

* The "untuned" versions of these models (e.g., "additive") for TES shown on upcoming slides but excluded from final evaluation

Results

Triple Exponential Smoothing model on raw data performed best with lowest MAE & (tied for) lowest MAPE:

Model	Log Data	Tuning	MAE	MAPE	MAE_H1	MAE_H2	MAE_H3	MAPE_H1	MAPE_H2	MAPE_H3
ExponentialSmoothing	N	Manual	9,559,131	27%	8,232,452	9,662,805	10,782,135	24%	29%	30%
ExponentialSmoothing	Y	Manual	10,529,673	29%	8,454,657	10,832,715	12,301,647	24%	30%	33%
Sarima	N	Short Grid Search	17,625,899	67%	11,563,515	18,363,968	22,950,214	40%	72%	88%
Sarima	N	Grid Search	9,843,491	33%	8,015,458	10,640,699	10,874,315	29%	37%	33%
Sarima	N	Manual	22,289,323	92%	16,481,080	23,139,193	27,247,696	72%	99%	105%
Sarima	Y	Short Grid Search	9,876,090	27%	8,183,549	9,969,859	11,474,863	22%	27%	31%
Sarima	Y	Grid Search	9,886,487	29%	7,851,162	10,110,756	11,697,541	23%	31%	32%
Sarima	Y	Manual	10,271,880	29%	8,358,623	10,539,407	11,917,611	24%	30%	33%
Prophet	N	Grid Search	11,510,718	46%	12,449,653	11,544,815	10,537,687	54%	47%	37%
Prophet	Y	Grid Search	11,333,605	44%	13,120,463	11,264,117	9,616,237	59%	44%	29%


Results

Forecast

Date	Forecast	Lower_CI	Upper_CI
2025-01-01	59,915,879	31,650,287	67,112,957
2025-02-01	59,477,191	30,411,927	65,506,481
2025-03-01	75,993,848	38,341,516	84,996,332

```
triple_tuned = ExponentialSmoothing(  
    data['Weight'],  
    trend="additive",  
    damped_trend=True,  
    seasonal="multiplicative",  
    seasonal_periods=12  
).fit(optimized=True)
```

Model

MAPE Levels

- ❖ <20% = excellent
- ❖ **20-30% = good**
- ❖ <40% = acceptable for monthly forecasting

Good for seasonal / volatile, high volume, monthly data – a difficult combination to forecast.

It may benefit from additions/further fine-tuning.

Note, MAPE is higher than it would be with non-seasonal data where it can be lower (up to <5%)

notebook link:

GitHub Pages

Technical Setup

Data

Source: Census US imports of Cocoa Beans 2020-2024

Type: Structured

Observations: 60 (months)

Features: Month/Year

Target: Weight & Spend

Note, N is higher originally as the grain was by Country, but Country was not used in this forecast

Setup

Language: Python

Packages: prophet, seaborn, matplotlib, numpy, pandas

Compute: Python3 CPU in Google Colab

Evaluation Metrics

- Mean Absolute Error (MAE) & Mean Absolute Percentage Error (MAPE) on forecast

*Click for
Full Deck*