

Small Sample Test


project by:

LINDSAY MCFARLANE

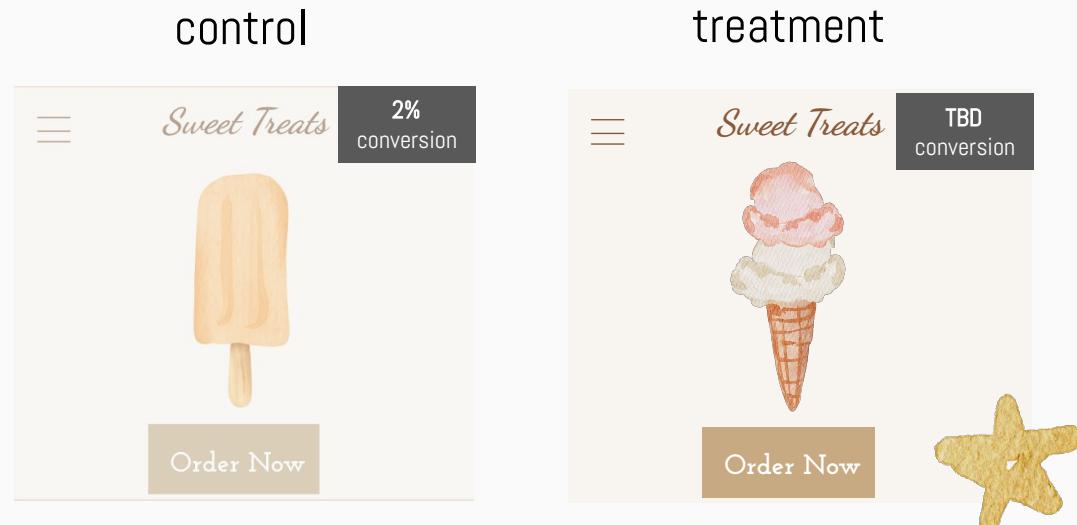
www.lindsaymsba.com

831.601.7684 | lindsay.alexandra14@gmail.com | [linkedin: lindsay-mcfarlane](#)

Summary

Full Deck

Summary


Background

Sweet Treats is a (hypothetical) national chain selling frozen desserts. They want to run an *A/B test on the landing page* from which customers click through to start an online order

Hypothesis

The treatment landing page performs better than the control
(with significance at 5% level)

Popsicles were previously the top product, but with shifts in taste, its interest is declining. Conversion is also currently on the **lower end of industry benchmarks** (2%-6.5%)

I **hypothesize improvement** with the treatment, as it features **ice cream**, which is the store's **new top product**

Test Design

Constraints

Significance level: 5%

Power: 80%

Baseline conversion rate: 2%

Sample Needed: 8,000

The **test was unexpectedly cut short**:

The landing page needs to be switched over sooner due to the orange popsicle product running out indefinitely due to a supply chain issue. There is interest in urgently switching to the treatment, as it features a current product. The results give as much information as I will get about how the treatment performed

Sample Size

The initial sample size of 8,000 users was **reduced to 890 users**

Methodology

Statistical Test

I need to use **Fisher's Exact Test** for small sample sizes

which is used when a cell has < 10 users:

Users in cell:

< 10

	Converted	Not_Converted
Control	9	450
Treatment	20	440

Results

Test confirms **treatment > control**

	Converted	Not_Converted
Treatment	20	440
Control	9	450

p1: Treatment Conversion Rate: 4.35%
p2: Control Conversion Rate: 1.96%

95 percent confidence interval:
1.098979 Inf

P-value: (0.029) (< 0.05)

Result is **statistically significant (5% level)**

"Result Power: 60.6 %"

However, the test was somewhat **underpowered** due to low volumes (<80%)

Observed treatment conversion rate is:

~2.2x

higher vs. control

True treatment odds lift:

>9.9 %

higher vs. control

95% Confident

Recommendation

In this case, given the constraint of wanting to feature current products...I am comfortable enough with the treatment performing some level higher with significance than the control and not vice versa.

I recommend moving forward with implementing the treatment page:

But I will not provide Revenue Impact:

Due to the test not hitting its sample size, or achieving its desired statistical power, the **lift cannot be** confidently/safely **used** in this scenario **to build a revenue projection.**

notebook link:

Tools: R in Google Colab
Data Source: Self-generated

Click for Full Deck

