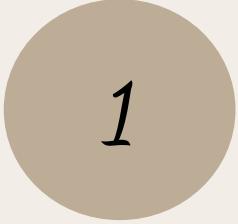


Bayesian Test

project by:


LINDSAY MCFARLANE

www.lindsaymsba.com

831.601.7684 | lindsay.alexandra14@gmail.com | linkedin: lindsay-mcfarlane

© 2026 Lindsay McFarlane. Please do not reproduce without permission.

1

Summary

2

Full Deck

Summary

Intro

Rue Scooter Co. is a (hypothetical) french moped company.
They are interested in running an ***A/B test*** to see if they can
improve performance of their Instagram ads

**RUE SCOOTER
CO.**

Hypothesis

Instagram Ads:

The treatment landing page conversion rate performs better than the control

	control	treatment
Rue Scooter Co.	Rue Scooter Co. 1% conversion	Rue Scooter TBD conversion
	<i>A tres-chic commute</i>	<i>A tres-chic commute</i>
	 RUE SCOOTER CO.	
	Learn More	Learn More

Ad features **just the logo** and tagline and conversion still has **room for improvement based on industry benchmarks (1%-4%)**

We **hypothesize improvement** with the treatment, as it **shows imagery and gives the user a feel of the product**

Methodology

Statistical Test

Since there is a large sample and two conversion rates to compare, and
I would like it in terms of a probability, I will use a Bayesian Test

$$P(B \text{ better} \mid \text{data}) = \frac{P(\text{data} \mid B \text{ better}) \times P(B \text{ better})}{P(\text{data})}$$

*Probability B is better given the data =
Likelihood of observing data if B is better × Prior belief that B is better
÷ Overall probability of observing the test data*

Decision criteria

- ✓ $P(\text{prob B} > \text{prob A}) \geq 95\%$
- ✓ HDI lower bound $\geq \text{mde}$
- ✓ HDI width has precision (width $\leq 1.6 \times \text{mde}$)

Test Design

Sample Size

The sample size needed is 50,000 users (per group)

Probability Threshold: 95%

Power / Assurance: 80%

Baseline conversion rate: 1%

MDE: 0.2% (20% uplift)

Priors: (1,1)

Sample Needed: 50,000 / group

Results

Test confirms **B > A**

Conversion Rate A: 1.01%

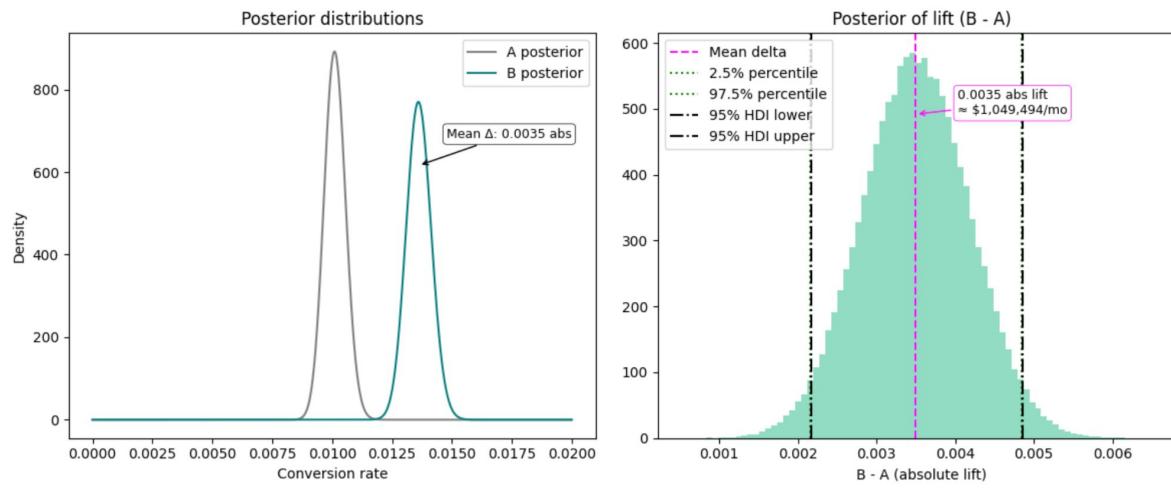
Conversion Rate B: 1.36%

Uplift (for B):

35%

higher vs.
control

Posterior Probability:
 $P(\text{prob B} > \text{prob A}) \approx 1.00$


B > A with:

100%

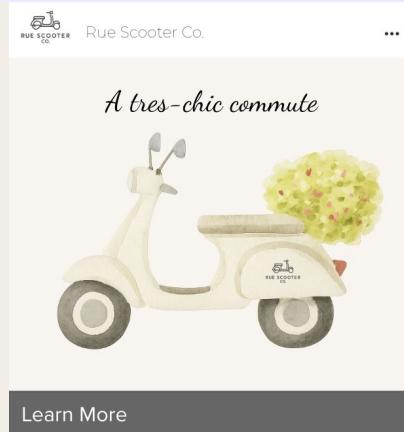
probability*

Results

The mean lift in conversion rate from A to B is 0.35%:

HDI
lower bound > mde of 0.2%

✓
[0.00218, 0.00486]


Predictive power with
5,000 more / group:

✓
1.000

Recommendation

*The probability that $B > A$ is greater than 95%
and the difference between the rates is > the lift we desired (0.2%) with precision,
and the revenue impact is high, therefore:*

I recommend implementing the treatment page:

notebook link:

GitHub Pages

Tools: R in Google Colab

Data Source: Self-generated

Click for Full Deck